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Controversy exists with respect to the choice of an appropriate critical value
when testing for linkage in a genomic screen. A number of critical values have
been proposed for single-locus and multi-locus linkage analyses. In this study,
criteria based on multiple single-locus analyses (i.e., regional test criteria) are
evaluated using simulation methods for three different map densities. Tests based
on single loci, multiple consecutive single loci, and moving averages of con-
secutive single loci are considered. Appropriate critical values are determined
based on results from simulations under the null hypothesis of no linkage. The
power of each “regional test ” was compared to the power of a single-locus test.
Results suggest that the best power was found when avefagiages over an
interval size of 9—15 cM, and that testing the average® ofalues from two
consecutive loci is superior to testing each single locus separately. The increase
in power ranged from 7— 29% over the simulations consid&edet. Epidemiol.
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INTRODUCTION

Genome mapping studies are being carried out on a number of complex dis-
eases where the susceptibility genes involved are likely to have moderate to small
effects, requiring investigation of large numbers of families [e.g., see Hauser et al.,
1996]. It has also been suggested that when an entire genome is scanned for linkage,
the nominalP value for “significance” at a specific location should be quite small to
allow for the large number of tests. Lander and Kruglyak [1995] have suggested that
P values on the order of IDare needed to conclude that there is “significant” evi-
dence for linkage; the test statistic is assumed to have a posterior probability of 5%
for a false positive finding. However, in linkage studies of real and simulated data
[e.g., Berrettini et al. 1997; Goldin et al., 1995 ], instead of seeing a highly signifi-
cantP value at a single locus, one often sees “moderately signifiPardfues across
a number of markers in a small region. Criteria for the detection of linkage based on
regional behavior of thé® value have been proposed [Goldin and Chase, 1997].
Such methods are given additional credibility by findings that around a true peak,
the linkage test statistic may behave differently than in the vicinity of a false positive
peak [Terwilliger et al., 1997]. In that study, it was shown (both by theoretical argu-
ments and by simulation) that true linkage peaks in genome scans are wider than
false peaks, and it was suggested that observing the length of linkage peaks was
most useful for eliminating false positive peaks. Siegmund et al. [1997] made a simi-
lar observation in a single simulated sample from the Genetic Analysis Workshop 10
[MacCluer et al., 1997] using data simulated for several quantitative trait measure-
ments and marker genotypes. They computed the average IBD value over a series of
markers and found that many false positive findings were eliminated this way. Using
the same series of simulated data from Genetic Analysis Workshop 10, Goldin and
Chase [1997] analyzed 100 replicate samples and found that linkage criteria based
on a series oP values appeared to be more powerful than criteria based on single
locus tests.

In the current study, the power of alternative criteria for linkage is examined
more systematically. Relatively simple genetic models were simulated and the power
to detect linkage of several multiple poftalue criteria was compared to the power
to detect linkage using single poiRtvalue criteria, holding the false positive rate
the same for all of the tests.

METHODS

A quantitative trait determined by a single two-allele locus was simulated in
samples of 100 nuclear families consisting of two parents and two offspring with
trait and marker information known for all individuals (100 sibpairs). The heritabil-
ity of the single locus component was either 90, 75, or 50%, with the remainder of
the phenotypic variation due to random environmenfatef. Amap of 11 marker
loci (10 map intervals) was simulated, with each marker having 4 equally frequent
alleles (heterozygosity of 0.75) . The trait locus was located between markers six
and seven. Three different map densities were used. Markers were equally spaced at
densities of 3, 5, and 10 cM, with the trait locus set at 16.5, 27.5, and 55 cM, respec-
tively. The simulated chromosome segments were 30, 50, and 100 cM in length. Not
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all combinations of parameters were simulated. Ascertainment of families was inde-
pendent of trait values.

The GenometricAnalysis Simulation Program (GASP) [Wilson et al., 1996]
was used to simulate the samples. One thousand samples were simulated for each
power determination. Each sample contained a single chromosomal segment, with
the locus responsible for the trait located in the middle of the segment as described
above. For each marker in each sample, the Haseman-Elston [Haseman and Elston,
1972] test statistic was computed using the SIBPAL program v2.7 [SAGE, 1994].
The resulting statistics aritlvalues were analyzed using the SAS program.

Several different linkage tests involvifyvalues at more than one locus were
examined in order to compare the power of these regional inference rules to the
power of a single locus test. Thresholds for both “significant” and “suggestive” link-
age as defined by Lander and Kruglyak [1995] were used. A significant linkage would
occur with probability no greater than 0.05 for a single genome scan under the null
hypothesis; a suggestive linkage would occur once per genome scan.

In order to set the appropriate thresholds for the different inference rules, the
same marker maps described above (with 11 markers and 10 map intervals) were
simulated, but the trait locus was located on a different chromosome and not linked
to any of the markers on the chromosome map segment. For each of the three map
densities, 1,000 genome scans (each of 3,300 cM) were simulated. Thus, a single
genome scan for the 10-cM map contained 33 100-cM chromosomal segments, a
single genome scan for the 5-cM map contained 66 50-cM chromosomal segments,
and the 3 cM map contained 110 30-cM chromosomal segments. The thresholds
were set so that significant linkage would occur approximately 50 times in 1,000
scans and suggestive linkage would occur approximately 1,000 times in 1,000 ge-
nome scans (once/scan). The following multiBlealue criteria were tested: 2 con-
secutiveP values; 2 of 3 consecutiVevalues; and the average of 2, 3, or 4 consecutive
P values. For each of these criteria, overlapping computations were done by advanc-
ing the set oP values by one marker along the segment.

RESULTS

The thresholds for single and multiplevalues for each criterion were deter-
mined from the simulations under the null hypothesis of no linkage as described
above. Threshold values were tested by trial and error until the desired false positive
rates were obtained. These thresholds are shown in Table | for each of the three map
densities. Thresholds were set to keep the false positive rate identical (or nearly iden-
tical) for each criterion examined. The thresholds for siriglealues were larger
than the 2. 107 (significant) and 7.4 10™ (suggestive) critical values suggested
by Lander and Kruglyak [1995] for the case of a continuous genome scan for fully
informative markers. As expected, the thresholds were less stringent for more widely
spaced markers and the thresholds for all criteria became more stringent as the map
density increased.

The comparison of power for the different criteria is shown in Table Il for the
trait with 90% heritability for all three map densities. No improvement in power or a
very small improvement was seen in some cases for the criteria of 2 consecutive
significantP values or 2 of 3 consecutive significdhvalues compared to a sindbe
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TABLE I. Thresholds for Single Point P Values and Multiple P Values*

Threshold for:

Criterion 10 cM Map 5 cM Map 3 cM Map
SingleP value Significant 0.00018 0.00012 0.000095
Suggestive 0.00332 0.0019 0.001175
2 consecutivé® values Significant 0.00305 0.0012 0.00083
Suggestive 0.02314 0.01275 0.00775
2/3 consecutiv® values Significant 0.0025 0.0011 0.00065
Suggestive 0.01947 0.0104 0.00615
Average of 2P values Significant 0.00205 0.00092 0.0006
Suggestive 0.01622 0.00895 0.00546
Average of 3 values Significant 0.0056 0.0027 0.00158
Suggestive 0.03525 0.0183 0.01132
Average of 4P values Significant 0.0125 0.0055 0.0028
Suggestive 0.05695 0.0295 0.01755

*All thresholds set so that the number of false positives wagB0f¢r significant linkage and 1,000
(x2) for suggestive linkage.

value criterion. However, consistent improvement (up to 10 percentage points) was
seen using averadge values. In the case of the 10-cM map, the largest increase in
power was seen when 2 consecufealues were averaged (10-cM interval). This
was expected since linkage evidence decreases as the distance between the marker
and trait locus increases. For the 5- and 3-cM maps, an averadre whldes (inter-

val size of 15 and 9 cM, respectively) gave the highest power. An averag® of 5
values (12-cM interval) on the 3-cM map showed a slight additional increase in
power for suggestive linkage (data not shown). It is interesting to note in Table I,
the power improves when the map density increases from 10 to 5 cM but for the
threshold of suggestive linkage, povdercreaseslightly when the density increases
from 5 to 3 cM. In this case, the decrease is not substantial given the variation ex-
pected from the simulations. However, this does demonstrate that under the model
and sample size used here, a “ceiling” in power is reached at a 5-cM map density
and that there is not enough information gained by further increasing the marker
density to outweigh the more stringéhtalue threshold required.

TABLE Il. Power of Linkage Detection for a Quantitative Trait With 90% Heritability

Power (%) for 90% heritability

Criterion Linkage threshold 10 cM 5cM 3cM
SingleP value Significant 31.5 39.0 45.6
Suggestive 76.4 80.2 79.9
2 consecutivé® values Significant 38.1 39.9 46.7
Suggestive 77.1 83.3 82.2
2/3 consecutiv® values Significant 38.0 43.5 49.7
Suggestive 79.1 84.8 83.8
Average of 2P values Significant 38.8 442 47.6
Suggestive 79.7 86.0 83.6
Average of 3 values Significant 36.0 47.6 51.2
Suggestive 80.0 87.1 85.4
Average of 4P values Significant 34.2 49.8 52.1

Suggestive 78.9 88.0 86.3
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Table Il shows analogous results for a trait with 75% heritability. Again, there
is a consistent increase in power when averaginglues in a region compared to
testing singleP values. For the 3-cM map, we also tested a trait with 50% heritabil-
ity. The power to detect linkage was uniformly low in this case due to the relatively
few sibpairs and comparisons are not shown. However, because traits with low heri-
tability are of interest for mapping complex traits, some additional simulations were
performed for traits with 50 and 30% heritability but using larger sample sizes. Table
IV shows the results for these models assuming a 5-cM map density. For simplicity,
only the power comparisons between a silRgjlealue and an average of 4 consecu-
tive P values are shown. It is evident that averBgalues in a region are also more
powerful when heritability is lower.

Table V shows the percentage improvement according to heritabiliity averaged over
the three map densities. The improvement for 75% heritability is slightly larger than that
for 90% heritability. The absolute power for significant linkage is lower than that for
suggestive linkage, and thus the percentage improvement is expected to be larger.

The degree of improvement according to the position of the trait locus relative
to the marker map is also considere@dblé VI shows the power of the different
criteria for the case of 90% heritability and a 5-cM map. As expected, when the trait
locus is outside the map (in this case, 2.5 cM telomeric from marker locus 1), the
power to detect linkage decreases when multiplealues are used. When the trait
locus is between the first two markers, the power is the same for Binglees and
multiple P values although power starts to decrease when 3 or Peaues are
averaged.When the trait is between markers 2 and 3, there is an improvement in
power but not as much as when the trait locus is in the middle of the map. These
calculations with the trait locus beyond or at one end of the map are relevant only to
the extent that there are gaps in the current human genome map or if the trait locus is
at the end of a chromosome.

DISCUSSION

This study demonstrated that inference rules based on the average &f\aafees
in a small region improves the power to detect linkage. In one respect, it can be consid-

TABLE lll. Power of Linkage Detection for a Quantitative Trait With 75% Heritability

Power (%) for 75% heritability

Criterion Linkage threshold 10 cM 5cM 3cM
SingleP value Significant 9.6 13.0 15.5
Suggestive 435 45.7 46.5
2 consecutivé® values Significant 13.0 12.6 14.6
Suggestive 48.7 48.6 50.3
2/3 consecutiv® values Significant 12.6 14.2 16.1
Suggestive 48.9 51.5 50.4
Average of 2P values Significant 12.8 14.1 16.0
Suggestive 49.3 49.7 50.5
Average of 3 values Significant 11.7 15.8 17.9
Suggestive 50.1 54.4 54.9
Average of 4P values Significant 11.7 15.8 17.9

Suggestive 51.7 56.5 56.7
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TABLE IV. Power of Linkage Detection for 50% and 30% Heritability

Power (%) for heritability

Criterion Linkage threshold 50% (n = 300) 30% (n = 500)

SingleP value Significant 13.4 4.1
Suggestive 47.1 21.0

Average of 4P values Significant 18.6 5.0
Suggestive 53.4 27.3

ered a “smoothing” technique since marker information at single points will vary. How-
ever, even as the marker map got denser, there were improvements in power consistent
with true linkage peaks being longer than false peaks. This method will identify linkage
peaks that are present for several markers although the optimum window for testing
depends on map density and marker informativeness. In the simulations considered, the
best power was found when averaging statistics for an interval size of 9-15 cM. It was
encouraging that even for 10-cM maps, testing the average of 2 consétutiaes

was superior to testing each singl@alue. The very upper or lower limits of map den-

sity where averaging is useful was not determined in this study, but the method is clearly
valuable for the range of densities that are commonly used in genome scans. We did not
consider the effect of marker heterozygosity in this study. Clearly, a lower heterozygosity
would decrease the absolute power of linkage detection but one would still expect aver-
agedP values to be more powerful than single p&inalues. The marker heterozygosity

used is comparable to that of current microsatellite markers; it is fair to say that even
with current genotyping technology, marker informativeness is not a practical limitation
of genetic mapping.

The question remains as to what should the exact thresholds for significant or
suggestive linkage be when averaBevalues are used? Twhat extent are they
model dependent? There is no one criteria that can be applied to all cases. As in the
single point case, the requir@values for averages did depend on map density. If
one examines the thresholds in Table I, it can be seen that they are all fairly close,
even for different map densities. For a test interval of approximately 10-15 cM, the
thresholds are between 0.002 and 0.005, and between 0.02 and 0.03 for significant
and suggestive linkages, respectively.

As stated above, calculating an average of two or more sihglalues can be
considered a smoothing technique. One can argue that multipoint calculations are a better
smoothing technique since they make optimal use of linkage information. However, even
in standard multipoint calculationB,values or lod scores are examined at single points
along the genome; thus one would still expect to see an improvement using averages for
several points in a region. This would be similar to the mulitpoint IBD method of Goldgar
[1990], which tests for increased IBD sharing over regions rather than single points. In

TABLE V. Percentage Improvement of Power for AverageP Values Combined Over Map
Densities

Linkage threshold 90% Heritability 75% Heritability

Significant 22 29
Suggestive 7 20
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TABLE VI. Effect of Trait Locus Location on Power of Multiple P Values

Power of linkage detection : 90% heritability, 5-cM map

Linkage Trait locus Trait locus between  Trait locus between
Criterion threshold outside map markers 1 and 2 markers 2 and 3
SingleP value Significant 26.8 35.8 38.9
Suggestive 65.1 74.9 79.5
2 consecutivé® values Significant 19.0 34.3 41.0
Suggestive 58.7 75.0 81.1
2/3 consecutiv® values Significant 21.6 36.6 44.3
Suggestive 58.6 75.0 82.7
Average of 2P values Significant 21.0 36.6 43.9
Suggestive 61.8 76.4 82.5
Average of 3 values Significant 17.7 30.7 45.0
Suggestive 53.1 70.1 84.0
Average of 4P Values Significant 12.9 26.6 43.1
Suggestive 46.6 63.7 80.3

addition, this regional test method should be relatively robust with respect to errors in
marker order over small intevals. As map density increases, the increase in computa-
tional time for multiple average values will be trivial, whereas the compuational time
required for multipoint methods will increase tremendously over similarly sized mapping
intervals. Finally, multiple averagP values can be applied to any two point linkage
statistic (e.g., sib-pair or variance components methods).

Our strategy in examining inference rules that utilize mulfplelues could be
expanded to consider the behavior of linkage test statistics as a nearly continuous
processes. Using this approach, a curvilinear fit could be constructed for closely
spaced markers and its behavior studied under null and alternative hypotheses. Then,
a measure of discrepancy from the null hypothesis such as a mean integrated square
error could be used as a test statistic for linkage.

Although full coverage of this topic is beyond the scope of the present work, it
offers an interesting alternative for future investigation.

In summary, we showed that testing for linkage by computing avé&raghkies
in a region has somewhat higher power than testing single poaiues. The exact
thresholds depend on map density but are all within a narrow range and are well
suited to initial genome screens.
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